Convergence of exponential attractors for a finite element discretization of the Allen-Cahn equation
主题:  Convergence of exponential attractors for a finite element discretization of the Allen-Cahn equation主讲人:  Morgan Pierre地点:  腾讯会议83302663939时间:  2020-09-12 19:00:00组织单位:   理学院

主讲人简介

Morgan Pierre is a professor of Universityof Poitiers, France. His research field is models of phase transition and phaseseparation, such as Allen-Cahn and Cahn-Hilliard type equations.

内容摘要

We consider a space semidiscretization of the Allen-Cahn equation byP1 finite elements. We build a family of exponential attractors associated tothe discretized equations which is robust as the mesh parameterhtends to 0. Asa corollary, we obtain an upper bound on the fractal dimension of the globalattractor which is independent of h.Our proof is adapted from the result ofEfendiev, Miranville and Zelik concerning the continuity of exponentialattractors under perturbation of the underlying semigroup. We will also discussthe case of a time discretization and some perspectives.

报告主持:秦玉明  教授

报告语言:英语 

撰写:秦玉明

恒峰娱乐存款提款 奔驰宝马娱乐2上下分代理 2suncity.com 澳门24小时娱乐城网上 tt游戏平台最高占成
好运来游戏注册最高占成 百合娱乐360-真人现场游戏 金木棉游戏升级版 钱柜娱乐游戏线路测试 明升体育在线开户
拉斯维加斯百家乐网址 太阳2娱乐游戏平台最高占成 88游戏平台官网代理最高占成 希尔顿vip最高返点 psb22.com游戏怎么登入
加拿大幸运28开奖查询 传奇游戏免费注册 申博会员登入不了 酷彩娱乐体育 澳门永利高体育最高占成